dc.contributor.author |
Abenda, Simonetta |
en_US |
dc.contributor.author |
Grava, Tamara |
en_US |
dc.contributor.author |
Klein, Christian |
en_US |
dc.date.accessioned |
2010-02-05T10:20:57Z |
en_US |
dc.date.accessioned |
2011-09-07T20:19:52Z |
|
dc.date.available |
2010-02-05T10:20:57Z |
en_US |
dc.date.available |
2011-09-07T20:19:52Z |
|
dc.date.issued |
2010-02-05T10:20:57Z |
en_US |
dc.identifier.uri |
http://preprints.sissa.it/xmlui/handle/1963/3840 |
en_US |
dc.description.abstract |
The small dispersion limit of solutions to the Camassa-Holm (CH) equation is characterized by the appearance of a zone of rapid modulated oscillations. An asymptotic description of these oscillations is given, for short times, by the one-phase solution to the CH equation, where the branch points of the corresponding elliptic curve depend on the physical coordinates via the Whitham equations. We present a conjecture for the phase of the asymptotic solution. A numerical study of this limit for smooth hump-like initial data provides strong evidence for the validity of this conjecture.... |
en_US |
dc.format.extent |
613403 bytes |
en_US |
dc.format.mimetype |
application/pdf |
en_US |
dc.language.iso |
en_US |
en_US |
dc.relation.ispartofseries |
SISSA;10/2010/FM |
en_US |
dc.relation.ispartofseries |
arXiv.org;0909.1020 |
en_US |
dc.title |
Numerical Solution of the Small Dispersion Limit of the Camassa-Holm and Whitham Equations and Multiscale Expansions |
en_US |
dc.type |
Preprint |
en_US |
dc.contributor.department |
Mathematical Physics |
en_US |
dc.contributor.area |
Mathematics |
en_US |