dc.contributor.author | Anello, Irene | |
dc.contributor.author | Braides, Andrea | |
dc.contributor.author | Caragiulo, Fabrizio | |
dc.date.accessioned | 2022-12-22T08:22:08Z | |
dc.date.available | 2022-12-22T08:22:08Z | |
dc.date.issued | 2022-12-21 | |
dc.identifier.uri | http://preprints.sissa.it:8080/xmlui/handle/1963/35452 | |
dc.description | Preprint SISSA 22/2022/MATE | en_US |
dc.description.abstract | Dimension-reduction homogenization results for thin films have been obtained under hy potheses of periodicity or almost-periodicity of the energies in the directions of the mid-plane of the film. In this note we consider thin films, obtained as sections of a periodic medium with a mid-plane that may be incommensurate; that is, not containing periods other than oggi si 0. A geometric almost-periodicity argument similar to the cut-and-project argument used for quasicrystals allows to prove a general homogenization result. | en_US |
dc.language.iso | en | en_US |
dc.title | A note on the homogenization of incommensurate thin films | en_US |
dc.type | Preprint | en_US |
dc.contributor.area | mathematics | en_US |