SISSA Open Science

A lower semicontinuity result for a free discontinuity functional with a boundary term

Show simple item record

dc.contributor.author Almi, Stefano
dc.contributor.author Dal Maso, Gianni
dc.contributor.author Toader, Rodica
dc.date.accessioned 2015-12-17T08:23:17Z
dc.date.available 2015-12-17T08:23:17Z
dc.date.issued 2015-12-15
dc.identifier.uri http://preprints.sissa.it/xmlui/handle/1963/35146
dc.description.abstract We study the lower semicontinuity in $GSBV^{p}(\Om;\R^{m})$ of a free discontinuity functional~$\F(u)$ that can be written as the sum of a crack term, depending only on the jump set~$S_{u}$, and of a boundary term, depending on the trace of~$u$ on~$\partial\Om$. We give sufficient conditions on the integrands for the lower semicontinuity of~$\F$. Moreover, we prove a relaxation result, which shows that, if these conditions are not satisfied, the lower semicontinuous envelope of~$\F$ can be represented by the sum of two integrals on~$S_{u}$ and~$\partial\Om$, respectively. en_US
dc.language.iso en en_US
dc.subject Free discontinuity problems en_US
dc.subject Special function of bounded variation en_US
dc.subject Lower semicontinuity en_US
dc.subject Relaxation en_US
dc.title A lower semicontinuity result for a free discontinuity functional with a boundary term en_US
dc.type Preprint en_US
dc.subject.miur MAT/05 en_US
dc.miur.area 1 en_US
dc.contributor.area Mathematics en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


Browse

My Account