SISSA Open Science

Singular perturbations of finite dimensional gradient flows

Show simple item record

dc.contributor.author Zanini, Chiara en_US
dc.date.accessioned 2006-07-26T08:45:16Z en_US
dc.date.accessioned 2011-09-07T20:27:34Z
dc.date.available 2006-07-26T08:45:16Z en_US
dc.date.available 2011-09-07T20:27:34Z
dc.date.issued 2006-07-26T08:45:16Z en_US
dc.identifier.citation Discrete Contin. Dyn. Syst. 18 (2007) 657-675 en_US
dc.identifier.uri http://preprints.sissa.it/xmlui/handle/1963/1847 en_US
dc.description.abstract In this paper we give a description of the asymptotic behavior, as $\epsilon\to 0$, of the $\epsilon$-gradient flow in the finite dimensional case. Under very general assumptions we prove that it converges to an evolution obtained by connecting some smooth branches of solutions to the equilibrium equation (slow dynamics) through some heteroclinic solutions of the gradient flow (fast dynamics). en_US
dc.format.extent 241737 bytes en_US
dc.format.mimetype application/pdf en_US
dc.language.iso en_US en_US
dc.relation.ispartofseries SISSA;41/2006/M en_US
dc.relation.ispartofseries arXiv.org;math.FA/0607461 en_US
dc.title Singular perturbations of finite dimensional gradient flows en_US
dc.type Preprint en_US
dc.contributor.department Functional Analysis and Applications en_US
dc.contributor.area Mathematics en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


Browse

My Account