SISSA Open Science

The beat of a fuzzy drum: fuzzy Bessel functions for the disc

Show simple item record Lizzi, Fedele en_US Vitale, Patrizia en_US Zampini, Alessandro en_US 2005 en_US 2011-09-07T20:28:41Z 2005 en_US 2011-09-07T20:28:41Z 2005 en_US
dc.identifier.citation JHEP 0509 (2005) 080 en_US
dc.identifier.uri en_US
dc.description.abstract The fuzzy disc is a matrix approximation of the functions on a disc which preserves rotational symmetry. In this paper we introduce a basis for the algebra of functions on the fuzzy disc in terms of the eigenfunctions of a properly defined fuzzy Laplacian. In the commutative limit they tend to the eigenfunctions of the ordinary Laplacian on the disc, i.e. Bessel functions of the first kind, thus deserving the name of fuzzy Bessel functions. en_US
dc.format.extent 404780 bytes en_US
dc.format.mimetype application/pdf en_US
dc.language.iso en_US en_US
dc.relation.ispartofseries SISSA;37/2005/FM en_US
dc.relation.ispartofseries;hep-th/0506008 en_US
dc.relation.uri 10.1088/1126-6708/2005/09/080 en_US
dc.title The beat of a fuzzy drum: fuzzy Bessel functions for the disc en_US
dc.type Preprint en_US
dc.contributor.department Mathematical Physics en_US
dc.contributor.area Mathematics en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


My Account