SISSA Open Science

A note on the homogenization of incommensurate thin films

Show simple item record

dc.contributor.author Anello, Irene
dc.contributor.author Braides, Andrea
dc.contributor.author Caragiulo, Fabrizio
dc.date.accessioned 2022-12-22T08:22:08Z
dc.date.available 2022-12-22T08:22:08Z
dc.date.issued 2022-12-21
dc.identifier.uri http://preprints.sissa.it:8080/xmlui/handle/1963/35452
dc.description Preprint SISSA 22/2022/MATE en_US
dc.description.abstract Dimension-reduction homogenization results for thin films have been obtained under hy potheses of periodicity or almost-periodicity of the energies in the directions of the mid-plane of the film. In this note we consider thin films, obtained as sections of a periodic medium with a mid-plane that may be incommensurate; that is, not containing periods other than oggi si 0. A geometric almost-periodicity argument similar to the cut-and-project argument used for quasicrystals allows to prove a general homogenization result. en_US
dc.language.iso en en_US
dc.title A note on the homogenization of incommensurate thin films en_US
dc.type Preprint en_US
dc.contributor.area mathematics en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


Browse

My Account