SISSA Open Science

A continuous dependence result for a dynamic debonding model in dimension one

Show simple item record

dc.contributor.author Riva, Filippo
dc.date.accessioned 2019-03-07T10:11:29Z
dc.date.available 2019-03-07T10:11:29Z
dc.date.issued 2019-03-07
dc.identifier.uri http://preprints.sissa.it/xmlui/handle/1963/35329
dc.description.abstract In this paper we address the problem of continuous dependence on initial and boundary data for a one-dimensional debonding model describing a thin film peeled away from a substrate. The system underlying the process couples the weakly damped wave equation with a Griffith’s criterion which rules the evolution of the debonded region. We show that under general convergence assumptions on the data the corresponding solutions converge to the limit one with respect to different natural topologies. en_US
dc.language.iso en en_US
dc.publisher SISSA en_US
dc.relation.ispartofseries SISSA;05/2019/MATE
dc.subject Thin films en_US
dc.subject Dynamic debonding en_US
dc.subject Wave equation in time-dependent domains en_US
dc.subject Griffith’s criterion en_US
dc.subject Continuous dependence en_US
dc.title A continuous dependence result for a dynamic debonding model in dimension one en_US
dc.type Preprint en_US
dc.miur.area 1 en_US
dc.contributor.area Mathematics en_US
dc.relation.firstpage 1 en_US
dc.relation.lastpage 26 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


Browse

My Account