SISSA Open Science

On Geometric Quantum Confinement in Grushin-Like Manifolds

Show simple item record Gallone, Matteo Michelangeli, Alessandro Pozzoli, Eugenio 2018-09-19T07:05:15Z 2018-09-19T07:05:15Z 2018-09
dc.description 16 pages en_US
dc.description.abstract We study the problem of so-called geometric quantum confinement in a class of two-dimensional incomplete Riemannian manifold with metric of Grushin type. We employ a constant-fibre direct integral scheme, in combination with Weyl's analysis in each fibre, thus fully characterising the regimes of presence and absence of essential self-adjointness of the associated Laplace-Beltrami operator. en_US
dc.language.iso en en_US
dc.relation.ispartofseries SISSA;36/2018/MATE
dc.subject Geometric quantum confinement en_US
dc.subject Grushin manifold en_US
dc.subject geodesically (in)complete Riemannian manifold en_US
dc.subject Laplace-Beltrami operator en_US
dc.subject almost-Riemannian structure en_US
dc.subject self-adjoint operators in Hilbert space en_US
dc.subject Weyl's limit-point limit-circle criterion en_US
dc.subject constant-fibre direct integral. en_US
dc.title On Geometric Quantum Confinement in Grushin-Like Manifolds en_US
dc.type Preprint en_US
dc.miur.area 1 en_US
dc.contributor.area Mathematics en_US
dc.relation.firstpage 1 en_US
dc.relation.lastpage 16 en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


My Account