SISSA Open Science

Stochastic homogenisation of free-discontinuity problems

Show simple item record Cagnetti, Filippo Dal Maso, Gianni Scardia, Lucia Zeppieri, Caterina Ida 2018-03-19T09:16:27Z 2018-03-19T09:16:27Z 2018-03
dc.description.abstract In this paper we study the stochastic homogenisation of free-discontinuity functionals. Assuming stationarity for the random volume and surface integrands, we prove the existence of a homogenised random free-discontinuity functional, which is deterministic in the ergodic case. Moreover, by establishing a connection between the deterministic convergence of the functionals at any fixed realisation and the pointwise Subadditive Ergodic Theorem by Akcoglou and Krengel, we characterise the limit volume and surface integrands in terms of asymptotic cell formulas. en_US
dc.language.iso en en_US
dc.relation.ispartofseries SISSA;05/2018/MATE
dc.subject Subadditive Ergodic Theorem en_US
dc.subject stochastic homogenisation en_US
dc.subject free-discontinuity problems en_US
dc.subject Gamma-convergence. en_US
dc.title Stochastic homogenisation of free-discontinuity problems en_US
dc.type Preprint en_US
dc.subject.miur MAT/05 en_US
dc.miur.area 1 en_US
dc.contributor.area Mathematics en_US
dc.relation.firstpage 1 en_US
dc.relation.lastpage 23 en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


My Account