SISSA Open Science

Curvature flows on four manifolds with boundary

Show simple item record

dc.contributor.author Ndiaye, Cheikh Birahim en_US
dc.date.accessioned 2007-11-12T13:22:59Z en_US
dc.date.accessioned 2011-09-07T20:26:42Z
dc.date.available 2007-11-12T13:22:59Z en_US
dc.date.available 2011-09-07T20:26:42Z
dc.date.issued 2007-11-12T13:22:59Z en_US
dc.identifier.uri http://preprints.sissa.it/xmlui/handle/1963/2394 en_US
dc.description.abstract Given a compact four dimensional smooth Riemannian manifold (M, g) with smooth boundary, we consider the evolution equation by Q-curvature in the interior keeping the T-curvature and the mean curvature to be zero and the evolution equation by T-curvature at the boundary with the condition that the Q-curvature and the mean curvature vanish. Using integral method, we prove global existence and convergence for the Q-curvature flow (resp T-curvature flow) to smooth metric conformal to g of prescribed Q-curvature (resp T-curvature) under conformally invariant assumptions. en_US
dc.format.extent 287073 bytes en_US
dc.format.mimetype application/pdf en_US
dc.language.iso en_US en_US
dc.relation.ispartofseries SISSA;81/2007/M en_US
dc.title Curvature flows on four manifolds with boundary en_US
dc.type Preprint en_US
dc.contributor.department Functional Analysis and Applications en_US
dc.contributor.area Mathematics en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


Browse

My Account