SISSA Open Science

Derivation of a rod theory for phase-transforming materials

Show simple item record

dc.contributor.author Mora, Maria Giovanna en_US
dc.contributor.author Müller, Stefan en_US
dc.date.accessioned 2005 en_US
dc.date.accessioned 2011-09-07T20:28:41Z
dc.date.available 2005 en_US
dc.date.available 2011-09-07T20:28:41Z
dc.date.issued 2005 en_US
dc.identifier.citation Calc. Var. Partial Differential Equations 28 (2007) 161-178 en_US
dc.identifier.uri http://preprints.sissa.it/xmlui/handle/1963/1751 en_US
dc.description.abstract A rigorous derivation is given of a rod theory for a multiphase material,starting from three-dimensional nonlinear elasticity. The stored energy density is supposed to be nonnegative and to vanish exactly on a set consisting of two copies of the group of rotations SO(3). The two potential wells correspond to the two crystalline configurations preferred by the material. We find the optimal scaling of the energy in terms of the diameter of the rod and we identify the limit, as the diameter goes to zero, in the sense of Gamma-convergence. en_US
dc.format.extent 23269 bytes en_US
dc.format.mimetype application/pdf en_US
dc.language.iso en_US en_US
dc.relation.ispartofseries SISSA;21/2005/M en_US
dc.relation.uri 10.1007/s00526-006-0039-8 en_US
dc.title Derivation of a rod theory for phase-transforming materials en_US
dc.title.alternative Derivation of a rod theory for multiphase materials en_US
dc.type Preprint en_US
dc.contributor.department Functional Analysis and Applications en_US
dc.contributor.area Mathematics en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


Browse

My Account