SISSA Open Science

Where best to place a Dirichlet condition in an anisotropic membrane?

Show simple item record

dc.contributor.author Tilli, Paolo
dc.contributor.author Zucco, Davide
dc.date.accessioned 2014-11-10T12:19:50Z
dc.date.available 2014-11-10T12:19:50Z
dc.date.issued 2014
dc.identifier.uri http://preprints.sissa.it/xmlui/handle/1963/7481
dc.description.abstract We study a shape optimization problem for the first eigenvalue of an elliptic operator in divergence form, with non constant coefficients, over a fixed domain $\Omega$. Dirichlet conditions are imposed along $\partial\Omega$ and, in addition, along a set $\Sigma$ of prescribed length ($1$-dimensional Hausdorff measure). We look for the best shape and position for the supplementary Dirichlet region $\Sigma$ in order to maximize the first eigenvalue. We characterize the limit distribution of the optimal sets, as their prescribed length tends to infinity, via $\Gamma$-convergence. en_US
dc.language.iso en_US en_US
dc.publisher SISSA en_US
dc.relation.ispartofseries SISSA;61/2014/MATE
dc.subject first Dirichlet eigenvalue, optimization, Γ-convergence en_US
dc.title Where best to place a Dirichlet condition in an anisotropic membrane? en_US
dc.type Preprint en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


Browse

My Account