dc.contributor.author |
Poma, Flavia |
|
dc.date.accessioned |
2012-10-22T10:27:59Z |
|
dc.date.available |
2012-10-22T10:27:59Z |
|
dc.date.issued |
2012-10-08 |
|
dc.identifier.uri |
http://preprints.sissa.it/xmlui/handle/1963/6279 |
|
dc.description |
42 pages, 6 sections, 2 appendices. Preliminary version, comments
welcome. arXiv admin note: substantial text overlap with arXiv:1110.6395 |
en_US |
dc.description.abstract |
We define Gromov-Witten classes and invariants of smooth proper tame
Deligne-Mumford stacks of finite presentation over a Dedekind domain. We prove that they are deformation invariants and verify the fundamental axioms. For a smooth proper tame Deligne-Mumford stack over a Dedekind domain, we prove that the invariants of fibers in different characteristics are the same. We show that genus zero Gromov-Witten invariants define a potential which satisfies the WDVV equation and we deduce from this a reconstruction theorem for genus zero Gromov-Witten invariants in arbitrary characteristic. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
SISSA |
en_US |
dc.relation.ispartofseries |
arXiv:1210.2269v1; |
|
dc.title |
Gromov-Witten theory of tame Deligne-Mumford stacks in mixed characteristic |
en_US |
dc.type |
Preprint |
en_US |
dc.subject.keyword |
Gromov-Witten invariants |
en_US |
dc.subject.keyword |
virtual class |
en_US |
dc.subject.keyword |
intersection theory |
en_US |
dc.subject.keyword |
algebraic stack |
en_US |
dc.subject.keyword |
quantum product |
en_US |
dc.subject.miur |
MAT/03 GEOMETRIA |
|
dc.contributor.department |
Mathematical Physics |
en_US |
dc.miur.area |
1 |
en_US |
dc.contributor.area |
Mathematics |
en_US |