SISSA Open Science

Gromov-Witten theory of tame Deligne-Mumford stacks in mixed characteristic

Show simple item record Poma, Flavia 2012-10-22T10:27:59Z 2012-10-22T10:27:59Z 2012-10-08
dc.description 42 pages, 6 sections, 2 appendices. Preliminary version, comments welcome. arXiv admin note: substantial text overlap with arXiv:1110.6395 en_US
dc.description.abstract We define Gromov-Witten classes and invariants of smooth proper tame Deligne-Mumford stacks of finite presentation over a Dedekind domain. We prove that they are deformation invariants and verify the fundamental axioms. For a smooth proper tame Deligne-Mumford stack over a Dedekind domain, we prove that the invariants of fibers in different characteristics are the same. We show that genus zero Gromov-Witten invariants define a potential which satisfies the WDVV equation and we deduce from this a reconstruction theorem for genus zero Gromov-Witten invariants in arbitrary characteristic. en_US
dc.language.iso en en_US
dc.publisher SISSA en_US
dc.relation.ispartofseries arXiv:1210.2269v1;
dc.title Gromov-Witten theory of tame Deligne-Mumford stacks in mixed characteristic en_US
dc.type Preprint en_US
dc.subject.keyword Gromov-Witten invariants en_US
dc.subject.keyword virtual class en_US
dc.subject.keyword intersection theory en_US
dc.subject.keyword algebraic stack en_US
dc.subject.keyword quantum product en_US
dc.subject.miur MAT/03 GEOMETRIA
dc.contributor.department Mathematical Physics en_US
dc.miur.area 1 en_US
dc.contributor.area Mathematics en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


My Account