SISSA Open Science

Non-well-ordered lower and upper solutions for semilinear systems of PDEs

Show simple item record

dc.contributor.author Fonda, Alessandro
dc.contributor.author Klun, Giuliano
dc.contributor.author Sfecci, Andrea
dc.date.accessioned 2020-05-04T10:02:00Z
dc.date.available 2020-05-04T10:02:00Z
dc.date.issued 2020-05
dc.identifier.uri http://preprints.sissa.it:8180/xmlui/handle/1963/35350
dc.description.abstract We prove existence results for systems of boundary value problems involving elliptic second order differential operators. The as-sumptions involve lower and upper solutions, which may be either well-ordered, or not at all. The results are stated in an abstract framework, and can be translated also for systems of parabolic type. en_US
dc.language.iso en en_US
dc.publisher SISSA en_US
dc.relation.ispartofseries SISSA;08/2020/MATE
dc.title Non-well-ordered lower and upper solutions for semilinear systems of PDEs en_US
dc.type Preprint en_US
dc.subject.keyword elliptic operator; boundary value problems; Dirichlet and Neumann problem; lower and upper solutions; degree theory


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


Browse

My Account