SISSA Open Science

Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials

Show simple item record

dc.contributor.author Antonelli, Paolo
dc.contributor.author Michelangeli, Alessandro
dc.contributor.author Scandone, Raffaele
dc.date.accessioned 2017-09-11T11:03:35Z
dc.date.available 2017-09-11T11:03:35Z
dc.date.issued 2017
dc.identifier.uri http://preprints.sissa.it/xmlui/handle/1963/35294
dc.description.abstract We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrödinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem. en_US
dc.language.iso en en_US
dc.relation.ispartofseries SISSA;17/2017/MATE
dc.subject Non-linear Schrödinger equation en_US
dc.subject Magnetic potentials en_US
dc.subject Viscosity regularisation en_US
dc.subject Strichartz estimates en_US
dc.subject Weak solutions en_US
dc.title Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials en_US
dc.type Preprint en_US
dc.contributor.area Mathematics en_US
dc.identifier.sissaPreprint 17/2017/MATE
dc.relation.firstpage 1 en_US
dc.relation.lastpage 36 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


Browse

My Account