SISSA Open Science

On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviour

Show simple item record

dc.contributor.author Dubrovin, Boris en_US
dc.date.accessioned 2005 en_US
dc.date.accessioned 2011-09-07T20:28:34Z
dc.date.available 2005 en_US
dc.date.available 2011-09-07T20:28:34Z
dc.date.issued 2005 en_US
dc.identifier.citation Comm. Math. Phys. 267 (2006) 117-139 en_US
dc.identifier.uri http://preprints.sissa.it/xmlui/handle/1963/1786 en_US
dc.description.abstract Hamiltonian perturbations of the simplest hyperbolic equation $u_t + a(u) u_x=0$ are studied. We argue that the behaviour of solutions to the perturbed equation near the point of gradient catastrophe of the unperturbed one should be essentially independent on the choice of generic perturbation neither on the choice of generic solution. Moreover, this behaviour is described by a special solution to an integrable fourth order ODE. en_US
dc.format.extent 250067 bytes en_US
dc.format.mimetype application/pdf en_US
dc.language.iso en_US en_US
dc.relation.ispartofseries SISSA;89/2005/FM en_US
dc.relation.ispartofseries arXiv.org;math-ph/0510032 en_US
dc.relation.uri 10.1007/s00220-006-0021-5 en_US
dc.title On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviour en_US
dc.type Preprint en_US
dc.contributor.department Mathematical Physics en_US
dc.contributor.area Mathematics en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search SISSA Open Science


Browse

My Account