SDLThe DSpace digital repository system captures, stores, indexes, preserves, and distributes digital research material.http://preprints.sissa.it:80/xmlui2018-05-25T15:57:28Z2018-05-25T15:57:28ZCompactness by maximalityZagatti, Sandrohttp://preprints.sissa.it/handle/1963/353172018-05-25T00:00:33Z2011-01-01T00:00:00ZCompactness by maximality
Zagatti, Sandro
We derive a compactness property in the Sobolev space $W^{1,1}(\O)$ in order to study the Dirichlet problem for the eikonal equation \begin{displaymath} \begin{cases} \ha |\n u(x)|^2 - a(x) = 0 & \ \textrm{in} \ \O\cr u(x)=\varphi(x) & \ \textrm{on} \ \partial \O, \end{cases} \end{displaymath} without continuity assumptions on the map $a$.
2011-01-01T00:00:00ZExtended affine Weyl groups of BCD type, Frobenius manifolds and their Landau-Ginzburg superpotentialsDubrovin, BorisStrachan, Ian A.B.Zhang, YoujinZuo, Dafenghttp://preprints.sissa.it/handle/1963/353162018-05-24T00:00:37Z2015-01-01T00:00:00ZExtended affine Weyl groups of BCD type, Frobenius manifolds and their Landau-Ginzburg superpotentials
Dubrovin, Boris; Strachan, Ian A.B.; Zhang, Youjin; Zuo, Dafeng
For the root systems of type Bl, Cl and Dl, we generalize the result of [7] by showing the existence of Frobenius manifold structures on the orbit spaces of the extended affine Weyl groups that correspond to any vertex of the Dynkin diagram instead of a particular choice made in [7]. It also depends on certain additional data. We also construct LG superpotentials for these Frobenius manifold structures.
2015-01-01T00:00:00ZPerturbation techniques applied to the real vanishing viscosity approximation of an initial boundary value problemBianchini, Stefanohttp://preprints.sissa.it/handle/1963/353152018-05-23T00:00:32Z2007-01-01T00:00:00ZPerturbation techniques applied to the real vanishing viscosity approximation of an initial boundary value problem
Bianchini, Stefano
2007-01-01T00:00:00ZOn the Cauchy problem for the wave equation on time-dependent domainsDal Maso, GianniToader, Rodicahttp://preprints.sissa.it/handle/1963/353142018-04-24T00:00:32Z2018-04-01T00:00:00ZOn the Cauchy problem for the wave equation on time-dependent domains
Dal Maso, Gianni; Toader, Rodica
We introduce a notion of solution to the wave equation on a suitable class
of time-dependent domains and compare it with a previous de nition. We prove an
existence result for the solution of the Cauchy problem and present some additional
conditions which imply uniqueness.
2018-04-01T00:00:00Z