A NUMERICAL STUDY OF THE JERKY CRACK GROWTH IN ELASTOPLASTIC MATERIALS WITH LOCALIZED PLASTICITY

GIANNI DAL MASO AND LUCA HELTAI

Abstract. We present a numerical implementation of a model of quasi-static crack growth in linearly elastic-perfectly plastic materials. We assume that the displacement is antiplane, and that the cracks and the plastic slips are localized on a prescribed path. We provide numerical evidence of the fact that the crack growth is intermittent, with jump characteristics that depend on the material properties.

Keywords: fracture mechanics, plasticity, quasistatic evolution, rate-independent problems

2010 MSC: 49K10, 35J05, 35J25, 74A45, 74C05

Dedicated to Umberto Mosco on the occasion of his 80th birthday

1. Introduction

Models of quasi-static crack growth in elasto-plastic materials provide a description of fracture which is more accurate with respect to the classic purely brittle approach (see, for example, [14, 15, 11] and, for a numerical treatment, [13, 7, 18]). Indeed, in real materials the crack tip is always surrounded by a process zone where several nonlinear phenomena occur, among which plastic slip is one of the most relevant.

The case of crack growth in linearly elastic–perfectly plastic materials in the small strain regime was considered in [5] in the framework of the energetic approach to rate independent systems (for which we refer to [12] and the references therein).

Recent developments [6] have shown that in this model the crack growth is jerky. To be precise, the mathematical proof of this result has been obtained in a simplified setting in the antiplane case in dimension two, where both the plasticity and the crack are confined on a prescribed path. This jerky behavior is in agreement with experimental results [10, 8] and with numerical evidence (see, for example, [3, 13]).

In this work we provide a numerical implementation of the model introduced in [6], under suitable symmetry assumptions on the domain and on the boundary conditions. We confirm numerically that the crack growth is indeed intermittent, at least in those regimes where the plastic behavior cannot be neglected. Moreover, we provide examples which show the dependency of the number of jumps on the problem parameters.

Thanks to some symmetry assumptions, the contribution of the plastic part of the problem reduces to a non-homogenous Neumann boundary condition on the cohesive portion of the crack path, which is itself an unknown of the problem (see Figure 1).

When considering a rectangular domain and prescribing a straight crack path, we prove that the cohesive zone is a segment, and we provide a constructive way to identify the coordinates of the end points of this segment. This is done by solving a series of standard Laplace equations in the rest of the domain in order to minimize a suitable energy with respect to the coordinates of the end points. The presented

Preprint SISSA 06/2020/MATE.
strategy allows us to avoid the typical difficulties that are present in the solution of classical minimization problems of elasto-plasticity.

2. Formulation of the problem

We consider a simplified quasi-static model of crack growth in elasto-plastic materials, in the discrete time formulation with prescribed crack path. Our model is antiplane, with reference configuration given by the rectangle

\[\Omega := (0, a) \times (-b, b), \]

for some \(a > 0 \) and \(b > 0 \).

Given \(T \) and \(n \), let \(t_i := iT/n \), \(i = 0, \ldots, n \) be a discrete sampling of the time interval \([0, T]\). The displacement at time \(t_i \) is given by a scalar function \(u_i : \Omega \rightarrow \mathbb{R} \), which takes a prescribed value on the Dirichlet part of the boundary, given by

\[\partial D \Omega := [0, a] \times \{-b, b\}. \]

Namely, we assume that at time \(t_i \)

\[u_i(x, \pm b) = \pm w_i(x) \quad \text{for every } x \in (0, a), \]

where the functions \(w_i : [0, a] \rightarrow \mathbb{R} \) satisfy the following three conditions:

1. \(w_i \in C^\infty([0, a]) \) and not identically zero for \(i = 0, 1, \ldots, n \),
2. \(0 \leq w_{i-1} \leq w_i \) on \([0, a]\) for \(i = 1, \ldots, n \),
3. \(w_i \) is nonincreasing and nonnegative on \([0, a]\) for \(i = 0, 1, \ldots, n \).

The crack path is the segment \(\Gamma := [0, a] \times \{0\} \),

and in our model we assume also that the plastic strain is concentrated on \(\Gamma \). The plastic slip is localized on \(\Gamma_{s_i} \) and is given by \(\lbrack u_i \rbrack \), where, for every \(v \in H^1(\Omega \setminus \Gamma) \), we set \(\lbrack v \rbrack(x) = \lim_{y \to 0^+} (v(x, y) - v(x, -y)) \) in the sense of traces.

We consider a model where the stored elastic energy at time \(t_i \) is given by

\[E^e_i := \alpha \int_{\Omega \setminus \Gamma} |\nabla u_i|^2 \, dx \, dy, \]

the plastic dissipation distance between \(u_{i-1} \) and \(u_i \) is given by

\[E^p_i := \beta \int_{\Gamma_{s_i}} \lbrack u_i \rbrack \, dx, \]

while the energy dissipated by the crack growth in the time interval between \(t_{i-1} \) and \(t_i \) is given by

\[E^c_i := \gamma (s_i - s_{i-1}). \]

Here and henceforth \(\alpha \), \(\beta \), and \(\gamma \) are positive material constants.

We assume that the initial condition \(u_0 \) for the displacement belongs to \(H^1(\Omega) \) and satisfies

\[\begin{cases} \Delta u_0 = 0 & \text{in } \Omega, \\ u_0(\cdot, \pm b) = \pm w_0(\cdot) & \text{on } (0, a), \\ \frac{\partial u_0}{\partial x}(0, \cdot) = \frac{\partial u_0}{\partial x}(a, \cdot) = 0 & \text{on } (-b, b). \end{cases} \]
Let $s_0 \in (0, a)$ be the initial condition for the crack tip. In our model, the pair (u_i, s_i), with $i = 1, \ldots, n$, is obtained inductively as a solution of the minimum problem

$$
\min_{\substack{u \in H^1(\Omega^+ \\ u = w_0 \text{ on } \partial_0 \Omega \\ s_{i-1} \leq s \leq a}} \left\{ \frac{\alpha}{2} \int_{\Omega^+} |\nabla u|^2 \, dx \, dy + \beta \int_{\Gamma_2^+} [u - [u_{i-1}]] \, dx + \gamma(s - s_{i-1}) \right\}. \tag{2.12}
$$

In general this solution is not unique, but two solutions with the same value of s must coincide by strict convexity in u. By considering the Euler equation of (2.12) we see that the second term produces a cohesive force equal to $\pm \beta$ at the points of Γ_2^+ where $\pm([u] - [u_{i-1}]) < 0$.

Due to the symmetry of the data we shall work in $\Omega^+ := (0, a) \times (0, b)$ with Dirichlet boundary conditions on $\partial_0^+ \Omega := [0, a] \times \{b\}$. This is justified by the following remark.

Remark 2.1. Since the boundary condition (2.3) is odd with respect to y, a pair (u_i, s_i) is a solution of (2.12) if and only if u_i is odd with respect to y and $(u_i|_{\Omega^+}, s_i)$ is a solution of the minimum problem

$$
\min_{\substack{u \in H^1(\Omega^+ \\ u = u_i \text{ on } \partial_0^+ \Omega \\ s_{i-1} \leq s \leq a}} \left\{ \frac{\alpha}{2} \int_{\Omega^+} |\nabla u|^2 \, dx \, dy + \beta \int_{\Gamma_2^+} |u - u_{i-1}| \, dx + \frac{\gamma}{2} (s - s_{i-1}) \right\}. \tag{2.13}
$$

Moreover, u_0 is odd with respect to y and $u_0|_{\Omega^+}$ is the solution of the boundary value problem

$$
\begin{align*}
\Delta u &= 0 \quad \text{in } \Omega^+, \\
u &= w_0 \quad \text{if } y = b, \\
\frac{\partial u}{\partial x} &= 0 \quad \text{if } x = 0 \quad \text{or} \quad x = a, \\
u &= 0 \quad \text{if } y = b.
\end{align*} \tag{2.14}
$$

To solve (2.13), for every $s_{i-1} \leq s \leq a$ we find the unique solution u_i^s of the problem

$$
\min_{\substack{u \in H^1(\Omega^+ \\ u = u_i \text{ on } \partial_0^+ \Omega}} \left\{ \frac{\alpha}{2} \int_{\Omega^+} |\nabla u|^2 \, dx \, dy + \beta \int_{\Gamma_2^+} |u - u_{i-1}| \, dx \right\}, \tag{2.15}
$$

and then we find a value s_i of s which solves the minimum problem

$$
\min_{s_{i-1} \leq s \leq a} \left\{ \frac{\alpha}{2} \int_{\Omega^+} |\nabla u_i^s|^2 \, dx \, dy + \beta \int_{\Gamma_2^+} |u_i^s - u_{i-1}| \, dx + \frac{\gamma}{2} (s - s_{i-1}) \right\}. \tag{2.16}
$$

The pair (u_i, s_i), with $u_i := u_i^s$, is a solution of (2.13).

The solution of (2.15) will be constructed by using the solutions of some auxiliary boundary value problems for the Laplace equation, depending on a parameter σ, and then by choosing a particular value σ_s of this parameter. Let us fix $s \in [s_0, a]$. For every $\sigma \in [s, a]$ we consider the solution $u_i^{s, \sigma} \in H^1(\Omega^+)$ of the problem (see Fig. 1)

$$
\begin{align*}
\Delta u &= 0 \quad \text{in } \Omega^+, \\
u &= w_i \quad \text{if } y = b, \\
\frac{\partial u}{\partial x} &= 0 \quad \text{if } x = 0 \quad \text{or} \quad x = a, \\
\frac{\partial u}{\partial y} &= 0 \quad \text{for } 0 \leq x < s \quad \text{and} \quad y = 0, \\
\frac{\partial u}{\partial y} &= \beta \quad \text{for } s \leq x < \sigma \quad \text{and} \quad y = 0, \\
u &= 0 \quad \text{for } \sigma \leq x < a \quad \text{and} \quad y = 0.
\end{align*} \tag{2.17}
$$
By the continuous dependence on the data, the function $u^{s,\sigma}_i$ is continuous in $H^1(\Omega^+)$ with respect to σ.

We define

$$\sigma^*_s := \max\{\sigma \in [s, a] : u^{s,\sigma}_i \geq 0 \text{ in } \Omega^+\}. \quad (2.18)$$

The existence of the maximum follows easily from the continuous dependence of $u^{s,\sigma}$ on σ. We shall prove that the solution u^*_i of (2.15) is given by

$$u^*_i = u^{s,\sigma^*_s}_i, \text{ with } \sigma = \sigma^*_s. \quad (2.19)$$

Remark 2.2. By the maximum principle the inequality $u^{s,\sigma}_i \geq 0$ in Ω^+ is satisfied if and only if the trace of $u^{s,\sigma}_i$ satisfies $u^{s,\sigma}_i(x,0) \geq 0$ for every $x \in (s, \sigma)$. Therefore we have

$$\sigma^*_s := \max\{\sigma \in [s, a] : u^{s,\sigma}_i(x,0) \geq 0 \text{ for every } x \in (s, \sigma)\}. \quad (2.20)$$

The following lemmas shows the connection between the minimum problem (2.15) and the functions $u^{s,\sigma}_i$.

Lemma 2.3. Let $s \in [s_0, a)$, $i = 1, \ldots, n$, let $u^{s,\sigma}_i$ be defined as in (2.17), with $\sigma = \sigma^*_s$ defined as in (2.18), and let $z \in H^1(\Omega^+)$ be such that $0 \leq z \leq u^{s,\sigma}_i$ a.e. on Γ^+_s. Then $u^{s,\sigma}_i$ is the solution of the minimum problem

$$\min_{\substack{u \in H^1(\Omega^+) \\ u = w_i \text{ on } \partial u^+_\Omega}} \left\{ \frac{\alpha}{2} \int_{\Omega^+} |\nabla u|^2 \, dx \, dy + \beta \int_{\Gamma^+_s} |u - z| \, dx \right\}. \quad (2.21)$$

Proof. The definition of $u^{s,\sigma}_i$ given here differs from the definition in [6, formula (5.15)] only in the boundary condition at $y = b$, which is now the nondecreasing function w_i. The proof in our case can be obtained by repeating the proofs of Lemmas 5.7, 5.8, 5.9, and 5.11 of [6], with minor changes. In particular, the assumption that w_i is nonincreasing is used in the proof of Lemma 5.7, where the C^∞-regularity of $u^{s,\sigma}_i$ at the vertices $(0,b)$ and (a,b) cannot be obtained for a nonconstant w_i, with no consequences on the conclusion. \qed

We now want to prove that the solution u^*_i of problem (2.15) is given by $u^*_i = u^{s,\sigma^*_s}_i$, with $\sigma = \sigma^*_s$, where $u^{s,\sigma^*_s}_i$ is defined by (2.17) and σ^*_s by (2.18). This will be a consequence of Lemma 2.3 if we show that $u_{i-1} \leq u^{s,\sigma^*_s}_i$ for $s \geq s_{i-1}$ and $\sigma = \sigma^*_s$. The tools to prove this inequality are given by the next lemma. For every x and y in \mathbb{R}, we set $x \vee y := \max\{x, y\}$ and $x \wedge y := \min\{x, y\}$.

Figure 1. The boundary value problem for $u^{s,\sigma}_i$.
Lemma 2.4. Let \(i, j \in \{1, \ldots, n\} \), with \(i \leq j \), and let \(s \in [s_{i-1}, a] \), where \(s_{i-1} \) is defined in (2.13) for \(i \geq 2 \). Then, setting \(\sigma_{i-1} := \sigma_{i-1}^{s_{i-1}} \) and \(\sigma_j := \sigma_j^s \) according to (2.18), we have

\[
\begin{align*}
 u_{i-1}^{s_{i-1}, \sigma_{i-1}} &\leq u_j^{s, \sigma_j} \quad \text{in } \Omega^+, \\
 \sigma_{i-1} &\leq \sigma_j.
\end{align*}
\]

(2.22)

(2.23)

\[
\text{Proof. By the maximum principle we have}
\]

\[
0 \leq u_{i-1}^{s_{i-1}, \sigma_{i-1}} \leq u_j^{s, \sigma_j} \quad \text{in } \Omega^+,
\]

(2.24)

\[
\text{where we compare two solutions of problem (2.17), with } s = s_{i-1}, \text{ and } \sigma = \sigma_{i-1}, \text{ changing only the boundary condition from } w_{i-1} \text{ to } w_j, \text{ which satisfy } w_{i-1} \leq w_j \text{ by (2.5).}
\]

To prove (2.22) it is enough to show that

\[
u_j^{s_{i-1}, \sigma_{i-1}} \leq u_j^{s, \sigma_j} \quad \text{in } \Omega^+.
\]

(2.25)

Let \(v := u_j^{s, \sigma_j} - u_j^{s_{i-1}, \sigma_{i-1}} \). Then \(v \in H^1(\Omega^+) \) and \(\Delta v = 0 \) in \(\Omega^+ \). See Figure 2 for a schematic of the boundary conditions satisfied by \(v \), that will be explained below.

Since \(u_j^{s, \sigma_j} = u_j^{s_{i-1}, \sigma_{i-1}} = w_j \) for \(y = b \), we have \(v = 0 \) for \(y = b \). The equalities \(\partial_x u_j^{s, \sigma_j} = \partial_x u_j^{s_{i-1}, \sigma_{i-1}} = 0 \) for \(x = 0 \) or \(x = a \) give

\[
\frac{\partial v}{\partial x} = 0 \quad \text{for } x = 0 \text{ or } x = a.
\]

(2.26)

Since \(u_j^{s_{i-1}, \sigma_{i-1}} \geq 0 \) in \(\Omega^+ \) by (2.24) and \(u_j^{s_{i-1}, \sigma_{i-1}} = 0 \) for \(\sigma_{i-1} < x < a \) and \(y = 0 \) by (2.17), we have \(\frac{\partial}{\partial y} u_j^{s_{i-1}, \sigma_{i-1}} \geq 0 \) for \(\sigma_{i-1} < x < a \) and \(y = 0 \). By (2.17) we have also \(\frac{\partial}{\partial y} u_j^{s_{i-1}, \sigma_{i-1}} = 0 \) for \(0 < x < s_{i-1} \) and \(y = 0 \) and \(\frac{\partial}{\partial y} u_j^{s_{i-1}, \sigma_{i-1}} = \frac{\beta}{\alpha} \) for \(s_{i-1} < x < \sigma_{i-1} \) and \(y = 0 \), hence \(\frac{\partial}{\partial y} u_j^{s_{i-1}, \sigma_{i-1}} \geq 0 \) for \(x \in (0, a) \setminus \{s_{i-1}, \sigma_{i-1}\} \) and \(y = 0 \). Since \(\frac{\partial}{\partial y} u_j^{s, \sigma_j} = 0 \) for \(0 < x < s \) and \(y = 0 \) by (2.17), the previous inequality gives

\[
\frac{\partial v}{\partial y} \leq 0 \quad \text{for } x \in (0, s) \setminus \{s_{i-1}, \sigma_{i-1}\} \text{ and } y = 0.
\]

(2.27)

By [6, Lemma 5.9], which is still valid with our definition of \(u_j^{s, \sigma_j} \), we have \(\frac{\partial}{\partial y} u_j^{s, \sigma_j} \leq \frac{\beta}{\alpha} \) for \(\sigma_j < x < a \) and \(y = 0 \). Since \(\frac{\partial}{\partial y} u_j^{s, \sigma_j} = \frac{\beta}{\alpha} \) for \(s < x < \sigma_j \) and
We now prove that, using a suitable version of the maximum principle, the boundary conditions discussed above (see Figure 2) imply that

\[\sigma \text{ vanishes in a neighborhood of the vertices of the rectangle } \Omega^+ \text{ and of the points } (s_{i-1},0), (s_i,0), (s_i,0). \]

Since points have capacity zero, every function in \(s_i \) and of the points \(\{s_{i-1},a\} \) imply that \(\sigma \), which can be proved by adapting the argument used in the proof of the inequality (2.23) follows from (2.18) and from the inequality (2.25).

\[\partial v \leq 0 \text{ for } \{s_{i-1},a\} \} \text{ and } y = 0. \quad (2.29) \]

We now prove that, using a suitable version of the maximum principle, the boundary conditions discussed above (see Figure 2) imply that \(\sigma \), which can be proved by adapting the argument used in the proof of the inequality (2.23) follows from (2.18) and from the inequality (2.25).

\[\partial v \leq 0 \text{ for } \{s_{i-1},a\} \} \text{ and } y = 0. \quad (2.29) \]

We now prove that, using a suitable version of the maximum principle, the boundary conditions discussed above (see Figure 2) imply that \(\sigma \), which can be proved by adapting the argument used in the proof of the inequality (2.23) follows from (2.18) and from the inequality (2.25).

\[\partial v \leq 0 \text{ for } \{s_{i-1},a\} \} \text{ and } y = 0. \quad (2.29) \]

We now prove that, using a suitable version of the maximum principle, the boundary conditions discussed above (see Figure 2) imply that \(\sigma \), which can be proved by adapting the argument used in the proof of the inequality (2.23) follows from (2.18) and from the inequality (2.25).

\[\partial v \leq 0 \text{ for } \{s_{i-1},a\} \} \text{ and } y = 0. \quad (2.29) \]

We now prove that, using a suitable version of the maximum principle, the boundary conditions discussed above (see Figure 2) imply that \(\sigma \), which can be proved by adapting the argument used in the proof of the inequality (2.23) follows from (2.18) and from the inequality (2.25).

\[\partial v \leq 0 \text{ for } \{s_{i-1},a\} \} \text{ and } y = 0. \quad (2.29) \]

We now prove that, using a suitable version of the maximum principle, the boundary conditions discussed above (see Figure 2) imply that \(\sigma \), which can be proved by adapting the argument used in the proof of the inequality (2.23) follows from (2.18) and from the inequality (2.25).

\[\partial v \leq 0 \text{ for } \{s_{i-1},a\} \} \text{ and } y = 0. \quad (2.29) \]
3. Finite element approximation

In order to provide a numerical approximation to problem (2.13), we fix a family \(\{ \mathcal{T}_h(\Omega^+) \}_{h>0} \) of conforming subdivisions of \(\overline{\Omega}^+ \) made of quadrilaterals, with \(h \) denoting their maximal size. We assume that \(\mathcal{T}_h(\Omega^+) \) are shape-regular and quasi-uniform in the sense of [4, 9], and that they contain the point \((s_0, 0)\) among their vertices. Each subdivision \(\mathcal{T}_h(\Omega^+) \) induces a discrete set \(\mathcal{S}_h \) in the segment \([s_0, a] \times \{0\}\), composed of all vertices of \(\mathcal{T}_h \) that belong to \([s_0, a] \times \{0\}\).

Given \(s, \sigma \in \mathcal{S}_h \) with \(s \leq \sigma \), we first consider a finite element approximation of the auxiliary problem (2.17).

Let \(\mathcal{V}_h \) denote the subspace of \(H^1(\Omega^+) \) continuous piecewise bi-linear functions subordinate to \(\mathcal{T}_h(\Omega^+) \), and let \(I_h : H^1(\Omega^+) \to \mathcal{V}_h \) be the Scott-Zhang interpolation [17] which has the following approximation property

\[
\| v - I_h v \|_{H^1(\Omega^+)} \leq C_{r, \Omega^+} h^r \| v \|_{H^{1+r}(\Omega^+)} , \quad \text{for } v \in H^{1+r}(\Omega^+) , \tag{3.1}
\]

where \(C_{r, \Omega^+} \) depends on \(r \), \(\Omega^+ \), and on the shape regularity of \(\mathcal{T}_h \), but is independent of \(h \).

Let \(\mathcal{V}_0^\sigma \) be the space of test functions in \(H^1(\Omega^+) \) whose trace vanish on \(\Gamma^\sigma_\alpha \) and on \([0, a] \times \{b\}\), and let \(\mathcal{V}_{h,0}^\sigma \subset \mathcal{V}_0^\sigma \) be its discrete counterpart. Moreover, let \(\mathcal{V}_{h,w}^\sigma \) be the the space of \(H^1(\Omega^+) \) functions whose trace on \([0, a] \times \{b\}\) coincides with the function \(w \) and that vanish on \(\Gamma^\sigma_\alpha \), and let \(\mathcal{V}_{h,w}^\sigma \) be the space of their Scott-Zhang interpolation onto \(\mathcal{V}_{h,w}^\sigma \).

The discrete counterpart of problem (2.17) then reads: Given the current boundary condition \(w_i \), a crack tip opening \(s \in \mathcal{S}_h \), and \(\sigma \in \mathcal{S}_h \), with \(s \leq \sigma \), find \(u_{i,h}^{s,\sigma} \in \mathcal{V}_{h,w}^{s,\sigma} \), satisfying

\[
\int_{\Omega^+} \nabla u_{i,h}^{s,\sigma} \nabla v_h \, dx \, dy = \int_{\Gamma^\sigma_\alpha} \frac{\beta}{\alpha} v_h \, dx , \quad \forall v_h \in \mathcal{V}_{h,0}^\sigma . \tag{3.2}
\]

Since the subdivision \(\mathcal{T}_h(\Omega^+) \) is conforming w.r.t. both \(s \) and \(\sigma \), i.e., both \(s \) and \(\sigma \) coincide with vertices of \(\mathcal{T}_h(\Omega^+) \), then each term in (3.2) can be computed exactly, resulting in a symmetric and positive definite linear system of equations whose solution can be computed numerically using a standard preconditioned conjugate gradient method. By [6, Lemma 5.4 and Lemma 5.5], there exists \(r \in (0, 1) \) such that \(u_{i,h}^{s,\sigma} \in H^{1+r}(\Omega^+) \), and we conclude that the numerical solution converges to the exact solution with the following estimate:

\[
\| u_{i,h}^{s,\sigma} - u_{i,h}^{s,\sigma} \|_{H^1(\Omega^+)} \leq C_{r, \Omega^+} h^r \| u_{i,h}^{s,\sigma} \|_{H^{1+r}(\Omega^+)} . \tag{3.3}
\]

An approximate solution to problem (2.13) is then obtained by induction on \(i \) through the solution of a series of auxiliary problems (3.2). To be precise, suppose that we know an approximate solution \((u_{i-1,h}, s_{i-1,h})\) of (2.13) at the time step \(i - 1 \). To construct \((u_{i,h}, s_{i,h})\), we proceed as follows.

For any \(s \in \mathcal{S}_h \), with \(s \geq s_{i-1,h} \), we consider \(\sigma_{i-1}^s \) the largest \(\sigma \in \mathcal{S}_h \) such that \(\sigma \geq s \) and \(u_{i-1,h}^{s,\sigma} \geq 0 \). Thanks to (2.23), it is enough to consider only \(\sigma \geq s \vee \sigma_{i-1}^s \).

We set \(u_{i,h}^{s,\sigma} = u_{i-1,h}^{s,\sigma} \) with \(\sigma = \sigma_{i-1}^s \). According to Lemma 2.5, \(u_{i,h}^{s,\sigma} \) can be considered as the discrete counterpart of the solution \(u_i^{s,\sigma} \) of problem (2.15).

The final step of our algorithm consists in finding a solution \(s_{i,h} \in \mathcal{S}_h \) to the minimum problem

\[
\min_{s \in \mathcal{S}_h} \left\{ \frac{\alpha}{2} \int_{\Omega^+} |\nabla u_{i,h}^{s,\sigma}|^2 \, dx \, dy + \beta \int_{\Omega^+} |u_{i,h}^{s,\sigma} - u_{i-1,h}| \, dx + \frac{\gamma}{2} (s - s_{i-1,h}) \right\}.
\]
The corresponding discrete solution at time index i is given by $u_{i,h} := u_{i,h}^{s_{i,h}}$, so that the pair $(u_{i,h}, s_{i,h})$ can be considered as the discrete counterpart of the solution of problem (2.13).

4. A numerical example

The example in this section has been implemented using the deal.II library [1, 2, 16]. We consider the domain $\Omega^+ = [0,a] \times [0,b]$, with $a = 2$ and $b = 0.5$, set the initial crack tip to $s_0 = 0.1$, and evolve the problem to a final time $T = 2.5$ for fixed values of $\alpha = 100$ and $\gamma = 0.5$, varying β in the set \{20, 40, 80, 160\}. We consider the time dependent boundary condition

$$w_i(x) = c_1 \left(\frac{1}{2} - \frac{1}{\pi} \arctan \left(\frac{(x-t_i-s_0)c_2 \pi}{c_1} \right) \right), \quad i \geq 0,$$

(4.1)

for $c_1 = 0.1$ and $c_2 = 0.2$, which is shown in Figure 3 for some time steps, and set $u_0 = 0$.

Figure 4 shows clearly the jerky evolution of the crack tip when β is small. As the value of β increases, the crack tip evolves with more and more jumps, and the cohesive zone becomes smaller and smaller. When β is very large, the evolution is essentially brittle, and the cohesive zone cannot be detected by the numerical algorithm. This is coherent with the results presented in [5, Subsection 8.2].

Acknowledgements. This paper is based on work supported by the National Research Projects (PRIN 2017) “Variational methods for stationary and evolution problems with singularities and interfaces”, and “Numerical Analysis for Full and Reduced Order Methods for the efficient and accurate solution of complex systems governed by Partial Differential Equations”, funded by the Italian Ministry of Education, University, and Research.
Figure 4. Crack fronts propagation for $\beta = 20, 40, 80,$ and 160. The vertical dash lines in the plot for $\beta = 20$ show the times at which the solution is plotted in Figures 5 and 6.
Figure 5. Solution at $y = 0$ and $y = 0.5$, for $t = 0.4, 0.8$, and 1.2 for the case $\beta = 20$. The lower part is added by symmetry.
Figure 6. Antiplane representation of the solution at $t = 0.4, 0.8,$ and 1.2 for the case $\beta = 20$.
REFERENCES

(Gianni Dal Maso) SISSA, Via Bonomea 265, 34136 Trieste, Italy
Email address, Gianni Dal Maso: dalmaso@sissa.it

(Luca Heltai) SISSA, Via Bonomea 265, 34136 Trieste, Italy
Email address, Luca Heltai: luca.heltai@sissa.it